Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.21.452479

ABSTRACT

The SARS-CoV-2 outbreak started in late 2019 in the Hubei province in China and the first viral sequence was made available to the scientific community on early January 2020. From there, viral genomes from all over the world have followed at an outstanding rate, reaching already more than 105 on early May 2020, and more than 106 by early March 2021. Phylodynamics methods have been designed in recent years to process such datasets and infer population dynamics and sampling intensities in the past. However, the unprecedented scale of the SARS-CoV-2 dataset now calls for new methodological developments, relying e.g. on simplifying assumptions of the mutation process. In this article, I build on the infinite alleles model stemming from the field of population genetics to develop a new Bayesian statistical method allowing the joint reconstruction of the outbreaks effective population sizes and sampling intensities through time. This relies on prior conjugacy properties that prove useful both to develop a Gibbs sampler and to gain intuition on the way different parameters of the model are linked and inferred. I finally illustrate the use of this method on SARS-CoV-2 genomes sequenced during the first wave of the outbreak in four distinct European countries, thus offering a new perspective on the evolution of the sampling intensity through time in these countries from genetic data only.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.05.21252520

ABSTRACT

In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now coined B.1.1.7. Based on the UK data and later additional data from other countries, a transmission advantage of around 40-80% was estimated for this variant. In Switzerland, since spring 2020, we perform whole genome sequencing of SARS-CoV-2 samples obtained from a large diagnostic lab (Viollier AG) on a weekly basis for genomic surveillance. The lab processes SARS-CoV-2 samples from across Switzerland. Based on a total of 7631 sequences obtained from samples collected between 14.12.2020 and 11.02.2021 at Viollier AG, we determine the relative proportion of the B.1.1.7 variant on a daily basis. In addition, we use data from a second lab (Dr Risch) screening all their samples for the B.1.1.7 variant. These two datasets represent 11.5 % of all SARS-CoV-2 confirmed cases across Switzerland during the considered time period. They allow us to quantify the transmission advantage of the B.1.1.7 variant on a national and a regional scale. Taking all our data and estimates together, we propose a transmission advantage of 49-65% of B.1.1.7 compared to the other circulating variants. Further, we estimate the effective reproductive number through time for B.1.1.7 and the other variants, again pointing to a higher transmission rate of B.1.1.7. In particular, for the time period 01.01.2021-17.01.2021, we estimate an average reproductive number for B.1.1.7 of 1.28 [1.07-1.49] while the estimate for the other variants is 0.83 [0.63-1.03], based on the total number of confirmed cases and our Viollier sequencing data. Switzerland tightened measures on 18.01.2021. A comparison of the empirically confirmed case numbers up to 20.02.2021 to a very simple model using the estimates of the reproductive number from the first half of January provides indication that the rate of spread of all variants slowed down recently. In summary, the dynamics of increase in frequency of B.1.1.7 is as expected based on the observations in the UK. Our plots are available online and constantly updated with new data to closely monitor the changes in absolute numbers.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.356758

ABSTRACT

Phylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, population size through time for clades of interest, based on molecular sequence data. In the fields of epidemiology and macroevolution these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of “total-evidence” analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, i.e. lacking morphological and molecular data, which we call occurrences , provide invaluable information to reconstruct past population sizes. Here, we present new methodological developments around the Fossilized Birth-Death Process enabling us to (i) efficiently incorporate occurrence data while remaining computationally tractable and scalable; (ii) consider piecewise-constant birth, death and sampling rates; and (iii) reconstruct past population sizes, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions. We finally illustrate our new implementation using two empirical datasets stemming from the fields of epidemiology and macroevolution. In epidemiology, we apply our model to the Covid-19 outbreak on the Diamond Princess ship. We infer the total prevalence throughout the outbreak, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we present an empirical case study of cetaceans. We infer the diversity trajectory using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. Our case studies highlight that the advances we present allow us to further bridge the gap between between epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL